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Abstract
Due to the complex and dynamic nature of many construction and infrastructure projects, the ability to detect and classify key activities performed in the field by various equipment and human crew can improve the quality and reliability of project decision-making and control. In particular to simulation modeling, process-level knowledge obtained as a result of activity recognition can help verify and update the input parameters of simulation models. Such input parameters include but are not limited to activity durations and precedence, resource flows, and site layout. The target of this research is to explore the prospect of using built-in smartphone sensors as ubiquitous multi-modal data collection and transmission nodes in order to detect detailed construction equipment activities which can ultimately contribute to the process of simulation input modeling. In the designed methodology, certain key features are extracted from the collected data using accelerometer and gyroscope sensors, and a subset of the extracted features is used to train supervised machine learning classifiers.
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Introduction
Productivity becomes very important key role in the construction industry. Although there is many efforts to increase the productivity of construction and infrastructure projects in recent years, the industry is still suffering from low productivity growth [1] and [2]. There are several key factors that can influence productivity in construction and infrastructure industry, including the uncertain, dynamic, and transient nature of most construction projects. During the pre-construction phase, and due to the lack of data, it is customary to make engineering assumptions about the availability of tools, resources, information, materials, equipment, construction methods, and flow of activities [3]. Although a level of versatility is often considered for such assumptions, the dynamics involved in most projects as they enter the construction phase, makes it necessary to revise initial project plans and decisions, which may in turn result in potential delays and rework [3] and [4].

As infrastructure projects increasingly become larger and more complex in nature, traditional manual quantitative analysis methods mostly fail to effectively and accurately capture key project productivity performance indicators. Therefore, computer simulation models capable of modeling uncertainties and stochastic events have become more relevant to the decision-making process especially when real world evaluation is difficult, expensive, or time-consuming. To achieve the best results, a simulation model should accurately represent the real engineering system through the integration of data that describe the real world resources and processes. Thus, automated data collection using sensors, vision-based systems, and laser scanners have gained credibility in quantitative analysis of construction activities.
Process-level data collection deals with data from construction resources. Detailed resource activity recognition using these data has a great potential in discovering knowledge about activity durations and precedence, resource flows, and site layout. Among different types of process-level knowledge, activity duration is undoubtedly one of the most influential factors as there is always an uncertainty component to duration values that can propagate in time and/or space and consequently affect the outcome of the decision-making process [5] and [6]. Therefore, a systematic approach for action recognition that leads to precise activity duration extraction can boost the accuracy of decision-making tools such as simulation models. It has been widely discussed that inaccurate and unrealistic simulation models with static input data built upon expert judgments, secondary data (from past projects), and assumptions made on the basis of available resources and information during the pre-construction phase are major impediments that do not allow the widespread use of simulation models within the construction industry [7].
This paper presents the latest findings on a critical component of an ongoing research, a ubiquitous data sensing and analysis system that captures multi-modal process data from construction equipment using mobile sensor nodes, and employs data mining and process reasoning methods to transform raw data into meaningful knowledge that can be ultimately incorporated into data-driven simulation models. In this paper, first, a comprehensive literature review is conducted to help identify the gaps in knowledge and practice, and put the presented work within proper context. Next, the requirements and necessary level of detail (LoD) and resolution in activity recognition is discussed, and the designed methodology is described. Finally, the experimental results of the developed methodology are presented and further discussion about the results is provided.
Level of detail in equipment activity recognition

Supervised classification of construction equipment activities requires labeling different action classes to train the learning algorithm. The LoD or resolution required to successfully identify different classes from sensory data, however, may vary for each application. For instance, different mechanical degrees of freedom (DoFs) of a piece of construction equipment may have different levels of acceleration and/or angular velocity. In light of this, the hypothesis of this research is that data collection using built-in smartphone sensors enables activity recognition of construction equipment with appropriate LoD. Since the collected data are time-stamped, this can eventually lead to precise extraction of corresponding activity durations. One major question in developing an activity recognition framework for simulation input modeling is what constitutes an “activity”? In other words, the extent to which each operation can be broken down (i.e. LoD) for modeling purposes defines the granularity of the activities modeled in the simulation. The significance of LoD in the context of modeling can be best seen in illustrative examples that use simulation results to create realistic replicas of engineering operations in visual environments such as simulation-based virtual or augmented reality [8]. In such environments, activities should be broken down to the most detailed level possible in order to render a smooth animation of the simulated operation. Consequently, if the final LoD does not include all mechanical DoFs, the resulting visualized scene appears unrealistic.

The state of a given piece of construction equipment can be broken down into further detailed actions. Here, action is defined as any process-level state of equipment that produces a distinctive sensory signal pattern. For example, Fig. 1 depicts a hierarchy of actions that can be performed by a front-end loader, a widely used construction equipment. As shown in this Figure, activities of a front-end loader can be broken down into different actions based on the defined LoD. In the coarsest breakdown (i.e. level 1), 2 classes are defined: Engine Off, and Engine On. Using the definition of action above, since these two classes produce two different sensory signal patterns, they can be treated as separate actions. In the next level, the Engine On class is further divided into the Idle and Busy classes. Therefore, the total number of possible classes in this LoD is 3 (i.e. Engine Off, Idle, and Busy). The action breakdown is continued to level 4, in which 5 classes are defined. If needed, this process can be continued even further. For example, Moving class may be divided into two subclasses of Going Forward and Going Backward. In most cases, the end application (purpose) of the activity recognition process can help determine the number of levels to which action breakdown should be continued.
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Fig. 1. LoD in activity breakdown of a front-end loader ()
As previously stated, the main focus of this study is to precisely extract activity durations. The occurrence of any action shown in an arbitrary level (referred to herein as level l) of the hierarchy of Fig. 1 can imply that the parent action right above it (in level l − 1) in the tree is occurring. However, depending on the circumstances, there may be two different interpretations. For instance, if the required LoD is level 4, given that an instance of Dumping action with duration t1 and an instance of Moving action with duration t2 are occurring, it can be concluded that two separate instances of Moving and Dumping action, with durations of t1 and t2 are taking place. On the other hand, if the required LoD is level 3, knowing that Moving and Scooping and Moving and Dumping actions are taking place with durations t3 and t4, respectively, one should add up t3 and t4 to calculate the duration of a single instance of Busy state (e.g. dumping soil into a hauler) as t3 + t4. In any case, as a general rule, it is possible to derive the duration of actions in level l − 1 given the duration of actions in level l, and not necessarily vice versa.
Activity recognition methodology
Multi-modal data is collected from different sensors (i.e. accelerometer, gyroscope, GPS) embedded in mobile (smartphone) devices placed inside construction equipment cabins. While GPS data is used later on to provide additional contextual information such as the proximity of two pieces of equipment (e.g. a front-end loader and a hauler) or work zone vicinity approximation [9], for accurate duration extraction (the focus of this study), mainly accelerometer and gyroscope data are subject to a major data processing effort. In particular, after collecting raw data, specific features should be extracted for classification. However, not all such features may contribute to the classification process, and thus a feature selection step needs to be taken. Selected features go through the training process and then new actions are recognized at the LoD specified in the training phase. Each one of these steps is described in detail in the following case study where real world data was used.
Data processing
Feature selection is the process of picking a subset of originally extracted features to optimally reduce the feature space. In other words, among all extracted features, there are some that may not add to the accuracy of the classification. This might be due to the correlation that exists among the collected data and consequently extracted features, since many actions result in a similar pattern in different directions and/or different sensor types (i.e. accelerometer vs. gyroscope). Therefore, in order to reduce the computational cost and time of the classification process, and increase its accuracy, a subset of the discriminative features is selected by filtering out (removing) irrelevant or redundant features [10]. In this study, two filtering approaches are used: ReliefF and Correlation-based Feature Selection (CFS). ReliefF is a weighting algorithm that assigns a weight to each feature and ranks them according to how well their values distinguish between the instances of the same and different classes that are near each other. CFS is a subset search algorithm that applies a correlation measure to assess the goodness of feature subsets based on the selected features that are highly correlated to the class, yet uncorrelated to each other. Using CFS, irrelevant and redundant features were removed which yielded 12 features (out of 42). These features were than ranked by ReliefF using their weight factors. The first 12 features selected by ReliefF were compared to those selected by CFS and the 7 common features in both methods were ultimately chosen as the final feature space. Table 1 shows the selected features by each filter as well as their intersection.

Table 1. Selected features by CFS and ReliefF and their intersection (A: Accelerometer, G: Gyroscope).

	Filter
	 Selected features
	Common selected features

	CFS
	A_mean_x, A_mean_y, A_mean_z,

 A_peak_x, A_iqr_y, A_iqr_z,

 A_correlation_z, A_rms_z,

 G_mean_x, G_mean_y, G_mean_z, G_variance_x
	G_mean_z

A_mean_x

G_mean_x

A_mean_y

	ReliefF
	G_mean_z, A_mean_x, G_mean_x,

 A_peak_z, A_mean_y, A_correlation_y,

 A_correlation_x, A_mean_z, A_iqr_z,

 A_peak_x, A_peak_y, G_rms_z
	A_mean_z

A_iqr_z

A_peak_x


Results 
Starting from level 2, for each LoD, five classifiers were trained. Training and testing were performed through stratified 10-fold cross validations. In a k-fold cross validation the dataset is divided into k sets of equal sizes, and classifiers are trained k times, each time they are tested on one of the k folds and trained using the remaining k − 1 folds. Moreover, in the stratified k-fold cross validation, each fold contains almost the same proportions of classes as in the whole dataset. The mean accuracy is reported as the accuracy of each class. Result of the classification performance for each case (i.e. LoD) is presented in Table 2 in terms of overall classifier accuracy.

Table 2: Overall accuracy of classifiers for each LoD.

	Level 2
	Classifier
	Accuracy(%)
	Level 3
	Classifier
	Accuracy(%)
	Level 4
	Classifier
	Accuracy(%)

	
	ANN
	98.59
	
	ANN
	81.30
	
	ANN
	86.09

	
	DT
	97.40
	
	DT
	81.21
	
	DT
	73.78

	
	KNN
	97.65
	
	KNN
	80.51
	
	KNN
	84.20

	
	LR
	96.93
	
	LR
	77.58
	
	LR
	84.42

	
	SVM
	96.71
	
	SVM
	78.03
	
	SVM
	78.58


As shown in Table 2, Neural Networks had the best relative overall accuracy among all five classifiers in all the LoDs. Moreover, although in level 2 with 3 classes the accuracy gets to as high as 98.59%, the highest accuracy in level 3 with 4 classes is 81.30% which is less than that of level 4 with 5 classes, which is 86.09%. According to Table 3, a window size of 1.28 seconds that corresponds to 128 data points has the best accuracy among the all three window sizes and thus is used for further analysis.

Table 3: Accuracy of the trained neural networks for different window sizes.

	Window size (Sec.)
	0.64
	1.28
	2.56

	Accuracy (%)
	82.03
	86.79
	82.45


Table 4 shows the number of segments of each activity within each class and the number of instances in each equipment action category.

Table 4: Number of segments and instances for each activity within each class.

	Level 4
	Activity
	Number of segments
	Number of instances

	
	Engine Off
	55
	2

	
	Idle
	36
	2

	
	Scooping
	32
	4

	
	Moving
	180
	8

	
	Dumping
	57
	4

	Level 3
	Activity
	Number of segments
	Number of instances

	
	Engine Off
	55
	2

	
	Idle
	36
	2

	
	Scooping
	142
	4

	
	Moving and Scooping
	127
	4

	Level 2
	Activity
	Number of segments
	Number of instances

	
	Engine Off
	55
	2

	
	Idle
	36
	2

	
	Busy
	269
	1


Tab. 5, Tab. 7 show the confusion matrices for classification of classes in levels 2, 3, and 4, with 3, 4, and 5 classes, respectively, using Neural Networks.

Table 5: Neural network confusion matrix for level 2 (A: Engine off, B: Idle, C: Busy).

	 
	A
	B
	C

	A
	0.98
	0.00
	0.02

	B
	0.00
	0.92
	0.08

	C
	0.00
	0.01
	0.99


Table 6:  Neural network confusion matrix for level 3 (A: Engine off, B: Idle, C: Moving and Scooping, D: Moving and Dumping).
	 
	A
	B
	C
	D

	A
	0.96
	0.04
	0.00
	0.00

	B
	0.03
	0.86
	0.08
	0.03

	C
	0.02
	0.00
	0.84
	0.14

	D
	0.00
	0.00
	0.30
	0.70


Table 7:  Neural network confusion matrix for level 4 (A: Engine off, B: Idle, C: Scooping, D: Moving, E: Dumping).
	 
	A
	B
	C
	D
	E

	A
	0.94
	0.06
	0.00
	0.00
	0.00

	B
	0.03
	0.83
	0.00
	0.14
	0.00

	C
	0.13
	0.00
	0.35
	0.39
	0.13

	D
	0.00
	0.00
	0.01
	0.96
	0.03

	E
	0.00
	0.00
	0.02
	0.30
	0.68


Following activity recognition and classification, activity durations should be extracted for simulation input modeling. Detected instances of each activity have a certain number of classified windows. Since each window is 1.28 seconds with 50% overlap with the previous window (i.e. 0.64 seconds), the duration of each instance is calculated using Eq. (1):

                                                               t(seconds) = (n+1) x 0.64




(1)
in which n is the number of detected windows of each class in each instance, and t is the duration of that instance of the target class. In order to find the LoD which results in the most accurate activity duration extraction, normal root mean squared errors (NRMSEs) of the actual activity durations and extracted ones are calculated and tabulated in Table 8.

Table 8:  NRMSEs of extracted activity durations compared to the real activity durations.

	Level 4
	Activity
	NRMSE of durations (%)

	
	Engine Off
	2.9

	
	Idle
	4.5

	
	Scooping
	44.1

	
	Moving
	6.5

	
	Dumping
	23.4

	Level 3
	Activity
	Number of segments

	
	Engine Off
	2.6

	
	Idle
	4.4

	
	Scooping
	3.8

	
	Moving and Scooping
	5.5

	Level 2
	Activity
	Number of segments

	
	Engine Off
	2.5

	
	Idle
	3.6

	
	Busy
	0.0


Conclusion and discussion details
The goal of this research was to investigate the prospect of using built-in smartphone sensors as ubiquitous multi-modal data collection and transmission nodes in order to detect detailed construction equipment activities. The discovered process-level knowledge can provide a solid basis for different applications such as productivity improvement, safety management, and fuel use and emission monitoring and control. In addition, this methodology can serve as a basis for activity duration extraction for the purpose of construction simulation input modeling. 
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